Neurodynamic Optimization and Its Applications in Robotics
نویسنده
چکیده
Optimization problems arise in a wide variety of scientific and engineering applications. It is computationally challenging when optimization procedures have to be performed in real time to optimize the performance of dynamical systems. For such applications, classical optimization techniques may not be competent due to the problem dimensionality and stringent requirement on computational time. One very promising approach to dynamic optimization is to apply artificial neural networks. Because of the inherent nature of parallel and distributed information processing in neural networks, the convergence rate of the solution process is not decreasing as the size of the problem increases. Neural networks can be implemented physically in designated hardware such as ASICs where optimization is carried out in a truly parallel and distributed manner. This feature is particularly desirable for dynamic optimization in decentralized decision-making situations arising frequently in robotics and control. In this talk, I will present the historic review and the state of the art of neurodynamic optimization models and selected applications in robotics. Specifically, starting from the motivation of neurodynamic optimization, we will review various recurrent neural network models for optimization. Theoretical results about the stability and optimality of the neurodynamic optimization models will be given along with illustrative examples and simulation results. It will be shown that many fundamental problems in robotics, such as robot motion planning and obstacle avoidance, can be readily solved by using the neurodynamic optimization models.
منابع مشابه
An Efficient Neurodynamic Scheme for Solving a Class of Nonconvex Nonlinear Optimization Problems
By p-power (or partial p-power) transformation, the Lagrangian function in nonconvex optimization problem becomes locally convex. In this paper, we present a neural network based on an NCP function for solving the nonconvex optimization problem. An important feature of this neural network is the one-to-one correspondence between its equilibria and KKT points of the nonconvex optimizatio...
متن کاملSpecial Issue on Neurodynamic Systems for Optimization and Applications.
Recurrent neural networks, as dynamical systems, are usually used as models for solving computationally intensive problems. Because of their inherent nature of parallel and distributed information processing, recurrent neural networks are promising computational models for real-time applications. Constrained optimization problems arise in a wide variety of scientific and engineering application...
متن کاملDual Space Control of a Deployable Cable Driven Robot: Wave Based Approach
Known for their lower costs and numerous applications, cable robots are an attractive research field in robotic community. However, considering the fact that they require an accurate installation procedure and calibration routine, they have not yet found their true place in real-world applications. This paper aims to propose a new controller strategy that requires no meticulous calibration and ...
متن کاملSwarm Intelligence and Its Applications in Swarm Robotics
This work gives an overview of the broad field of computational swarm intelligence and its applications in swarm robotics. Computational swarm intelligence is modelled on the social behavior of animals and its principle application is as an optimization technique. Swarm robotics is a relatively new and rapidly developing field which draws inspiration from swarm intelligence. It is an interestin...
متن کاملA Cognitive Neurodynamic Approach to Prediction of Students’ Adaptation to College: An Ex-Post Facto Study
Introduction: Campus life tends to make social and academic demands on college students. To cope with these demands, students are required to use their neurocognitive skills of problem- solving and planning intentional actions that target towards adaptation to college. This paper presents an illuminating perspective that would inform understanding of a new approach to cognitive neuroscience. Th...
متن کامل